
COMPASS for Pressure (or Flow)
Test macro to log data to a file with
commands specified in the macro

1. Open the COMPASS Macro Editor by this menu path; [Tools], <COMPASS Macro Editor>

2. Select “Test” then click the “New Macro” icon (blank white piece of paper) to start a new test macro.

3. Click [Yes] button to add a new function to module: Test

4. Select all of the text on the window and delete it

5. Copy and Paste all of the last two pages of this document into the window. Use [Ctrl]+[v] to paste as right-
clicking does not work in macro editor

6. Add, delete or edit commands as necessary. Make “n” in “Max = n“ equal the number of commands.

7. Enter “LogFromCmd” as the name in the “Title” box at the top and click the “Save” icon (disk icon). Error
check will automatically take place, any errors will be shown and macro will be saved if no errors.

8. If you want to edit the commands in the future open the COMPASS Macro Editor and click the “Edit macro”
icon. Save when done.

9. Close the COMPASS Macro Editor

10. If you want to be able to use the Test macro during a Manual Test you have to enable this. Open [Tools],
<Options> window and select the <Initialize Test> tab

11. Make sure the “Support manual test timed macro selection” checkbox is checked then click [Apply], then [OK]

13. To use in a manual test select the Test macro on the first Initialization screen. If the timer interval is zero (0)
the macro will not run.

14. Proceed through remainder of initialization screens like you normally do

15. Click the “Create DataFile” icon (yellow folder), otherwise macro will not log data

16. If the macro is working you will occasionally see the commands at the bottom left corner of the screen.

17. Open the log file in Notepad or Excel and check that it is being populated with data. Location is shown on top
line of the COMPASS data grid.

18. Open the log file in Excel to analyze results. Use [Data], <Text to Table> to separate data into columns.

19. To use with a test definition the test must be an Advanced Test to have the “Test Event Macro” box in the
“Data” tab. Choose the “LogFromCMD” macro in this box and select a timer interval in milli-seconds. If the
timer interval is zero (0) the macro will not run.

'**

'Test Macros do not have a return value. Manipulate

'the test or device collection as desired

'iT The current temperature point in the test

'iL The current line pressure point in the test

'iC The current pressure cycle in the test

'IP The current pressure point in the test

'cTest The test class

'cConfig Configuration class that holds all active devices

'**

'Declare variable LogFileName

Dim LogFileName

Function LogFromCmd(iT, iL, iC, iP, cTest, cConfig)

Dim cmds(12)

'On Error Resume Next

'Change "Max =" value to number of commands you want to log

'and add/enter commands to log below

Max = 5

cmds(0) = "PPOS"

cmds(1) = "speed"

cmds(2) = "PR"

cmds(3) = "amb"

cmds(4) = "PPCPR"

Step = cCOMPASS.CurrentTestStep

''' COMPASS Run State (see Macro Editor help file)

''' 0 - Set for common operations, Run, Edit, Options, etc. The bit

''' is cleared when the operation is complete (Data file Is created)

''' 1 - A COMPASS setup is being edited

''' 2 - Test initialization is active

''' 3 - Running a Test Definition

''' 4 - Running a Manual Test

''' 5 - Test initialization is complete and all instruments have been

''' initialized. The value is set before a Pre-Test macro is executed

''' 6 - Data files have been created as part of a Test Definition

''' or a Manual Test.

'Check if data file exists yet

If (cCOMPASS.COMPASSRunState And 2 ^ 6) = 0 Then

'Data files have not even been created

'cDebug.LogStatus "Run State: " & ccompass.COMPASSRunState

Exit Function

ElseIf LogFileName = "" Then

'cDebug.LogStatus "LogFileName Before Naming: " & LogFileName

'We need a filename for the log file, Use the DUT data file name

'with a *.log extension using the same file name

temp = trim(cCOMPASS.DataCollection(1).FileName)

'cDebug.LogStatus "FileName .dat: " & temp

LogFileName = left(temp, Len(temp)-3) & "log"

'cDebug.LogStatus "LogFileName After Naming: " & LogFileName

'Create header line for log file and write to log file

For i = 0 To max

sText = sText & cmds(i) & ";"

Next

rtv = SaveToTextFile(LogFileName,sText,True,";")

End If

sText = ""

For i = 0 To max

cCOMPASS.StatusDisplay "Reading: " & cmds(i)

If cCOMPASS.SystemAbort Then Exit Function

With cCOMPASS.cConfig.RefPrs(1).RangeMain

reply = .ioSendCommand(CStr(cmds(i)), False, True)

End With

sText = sText & reply & ";"

Next

'write data to log file

LogFromCmd = SaveToTextFile(LogFileName,sText,True,";")

End Function

'//

'Open/Create a text file for Append and add the

'passed-in text to the file. Optionally date/time

'stamp each entry, based on the boolean bLogDate

'parameter. Separator defines how the fields are

'separated, a ; is used by default.

'Close the file after each write, so it is available

'from multiple processes.

'//

Public Function SaveToTextFile(fName, sText, bLogDate, Separator)

Dim fso, f, sDate

Set fso = CreateObject("Scripting.FileSystemObject")

Set f = fso.OpenTextFile(fName, 8, True)

 ''' 8 = open for append

If Separator = "" Then Separator = ";"

 ''' default separator to semi-colon

If bLogDate Then

sDate = Date & Separator & formatDateTime(Time,3) & Separator

''' 3 = vbLongTime

f.Write sDate & sText & vbcrlf

Else

f.Write sText & vbcrlf

End If

f.Close

SaveToTextFile = True

End Function

